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The addition of Grignard reagents,1 or certain other organo-
metallics,2 to chiral 1-acylpyridinium salts1 gives synthetically
useful 2-substituted 1-acyl-2,3-dihydro-4-pyridones2. The utility

of heterocycles2 as chiral building blocks has prompted us to
investigate their preparation with various functionality and
stereocenters in the C-2 side chain. We have reported that the
addition of zinc or magnesium enolates of methyl ketones to1
provides 2-(2-oxoalkyl)-2,3-dihydro-4-pyridones in good yield and
high diastereoselectivity (90-94% de).3 The stereostructure of
an enolate (E/Z) can often determine the relative configuration
(syn/anti) of two new chiral centers in a product derived from its
addition to an electrophile having diastereotopic faces. To
ascertain if this diastereoselective process would operate by means
of a chiral 1-acylpyridinium salt as the electrophile, we initiated
a study on the reaction of1 with prochiral zinc enolates of ketones
and lactones.

Following the procedure developed for the analogous methyl
ketone reactions,3 the zincE-enolate of 3-pentanone (3 equiv,
LDA; ZnCl)4 was added to chiral salt1 (R* ) (-)-trans-2-(R-
cumyl)cyclohexyl, (-)-TCC)5 in THF/toluene at-78°C. An 83%
yield of dihydropyridone3 was isolated after chromatography
(Scheme 1). The reaction was found to be quite general, as
cyclobutanone and cyclopentanone enolates gave similar results
(57% and 82%, respectively). In all cases the major product was
the anti isomer, crystalline and easily separated from minute
amounts of minor diastereomers by means of radial preparative-
layer chromatography (silica gel, EtOAc/hexanes). Not only can
two stereogenic centers be simultaneously and stereoselectively
incorporated into a highly functionalized heterocycle with the use
of this method, but subsequent reduction of the side-chain ketone

with K-Selectride (THF,-78 °C) occurs with high diastereo-
selectivity (>96% de) to give an enantiopure dihydropyridone
containing three contiguous stereocenters. In this manner ketone
3 was reduced to alcohol4 (69%), which was converted to cyclic
carbamate5 with 1,1′-carbonyldiimidazole (TEA, THF, reflux;
85%). The relative stereochemistry of5 was determined by1H
NMR analysis. As shown in Scheme 2, the cyclobutane derivative
6a was converted to lactone7 via the Baeyer-Villiger reaction.
This chemoselective oxidation proceeded in 91% yield in the
presence of the enone moiety of6a which was protected by the
C-5 TIPS group. The stereochemistry of6aand7 was confirmed
by single-crystal X-ray analysis of7.6 This two-step sequence
allows the stereoselective preparation of a dihydropyridone (i.e.,
7) containing a hydroxy-derivative in theR-position of the C-2
side chain. A more direct route toR-oxygenated C-2 side chain
derivatives was investigated (Scheme 3). Zinc enolates of ketones
87 and98 were added to pyridinium salt1 to give dihydropyridones
10 and 11 with enolate facial selectivities of 9/1 and 4/1,
respectively. The major diastereomers were again easily isolated
by radial preparative-layer chromatography and shown to possess
the stereochemistry depicted as determined by single-crystal X-ray
analysis.6,9 Interestingly, the enolate of ketone8 (E-enolate) gives
the anti (2S*,2′S*) isomer 10 (60%), whereas the analogous
reaction using ketone9 (mainlyZ-enolate due to chelation)10 leads
predominately to the syn (2S*,2′R*) product 11 (55%) as
determined by X-ray analysis.6 Thus, the stereochemistry at C-2
can be set by the proper choice of the auxiliary, (+)- or (-)-
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TCC,5 and the stereochemistry at C-2′ can be controlled by using
an enolate with the appropriate geometry. To determine if lactone
anions give analogous results to the cyclic ketone series, the zinc
enolates ofγ-butyrolactone and dioxolanone1211 were added to
1 (Scheme 4). Dihydropyridones13and14were isolated as white
solids in 75 and 85% yields, respectively. No other diastereomers
were found upon purification of the crude products. The stereo-
chemistry of13 and14 was determined to be anti by1H NMR
and single-crystal X-ray analysis.6 TheE-enolate facial selectivity
can be explained by assuming an acyclic transition state with a

synclinal orientation as depicted in Figure 1. This TS-conforma-
tion may be favored due to reduced nonbonded interactions with
the pyridinium ring and electrostatic attraction of the positively
charged nitrogen and the negative enolate oxygen.12 The anti-
product selection observed in theE-enolate reactions ofN-
acylpyridinium salt1 is analogous to that found in the diastereo-
selective reactions of prochiral trialkylsilyl enol ethers with
N-acyliminium ions as reported by Heaney and co-workers.13 This
stereoselection is in contrast to the syn-selective Me3SiOTf-
mediated reaction of enolsilanes with acetals14 and the Lewis acid-
catalyzed reaction ofN-benzyloxycarbonyl-2-methoxypyrrolidine
with 3-methyl-2-trimethylsiloxyfuran,15 which have been proposed
to proceed via acyclic extended transition states.16

To examine the usefulness of lactone14as a synthetic building
block, it was treated with anhydrous HCl in methanol (reflux, 2
h). A very clean reaction occurred providing a 97% yield of
hydroxyester15. The Weinreb’s amide16was also prepared from
14 (Me3Al, MeONHMe‚HCl, CH2Cl2) in 97% yield.17 These
reactions, and those reported above in the ketone series, demon-
strate that functional groups in the C-2 side chain can undergo
useful synthetic transformations in the presence of the dihydro-
pyridone ring system. The application of this chemistry and the
utility of these highly functionalized dihydropyridones (7, 10-
11, 13-16) as chiral building blocks for natural product synthesis
are under study in our laboratories.
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Figure 1. Transition state forE-enolate addition to1.
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